Orthogonal bases of Calogero-type models

Saburo Kakei *
Department of Mathematical Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153, Japan

Abstract

Algebraic structure of Calogero-type models are investigated by using the exchange-operator formalism. It is shown that the set of the Jack polynomials whose arguments are Dunkl-type operators provides an orthogonal basis.

1 Introduction

Among quantum integrable models in one dimension, Calogero-Sutherland type models catch renewed interests, because of not only their physical significance, but also their beautiful mathematical structure. An example of such models is the Calogero model with harmonic potential[1, 2]:

$$
\begin{equation*}
H_{A}=\frac{1}{2} \sum_{j=1}^{N}\left(-\frac{\partial^{2}}{\partial x_{j}^{2}}+x_{j}^{2}\right)+\sum_{j<k} \frac{\beta(\beta-1)}{\left(x_{j}-x_{k}\right)^{2}} . \tag{1}
\end{equation*}
$$

The subscript " A " signifies that this Hamiltonian is invariant under the action of the symmetric group S_{N}, i.e., the A_{N-1}-type Weyl group. There also exist Calogero-type models associated with other types of the Weyl groups. The B_{N}-invariant counterpart of the Hamiltonian (1) is the following[3]:

$$
\begin{align*}
H_{B}= & \frac{1}{2} \sum_{j=1}^{N}\left(-\frac{\partial^{2}}{\partial x_{j}^{2}}+x_{j}^{2}\right)+\sum_{j=1}^{N} \frac{\gamma(\gamma-1)}{x_{j}^{2}} \\
& +\sum_{j<k}\left\{\frac{\beta(\beta-1)}{\left(x_{j}-x_{k}\right)^{2}}+\frac{\beta(\beta-1)}{\left(x_{j}+x_{k}\right)^{2}}\right\} . \tag{2}
\end{align*}
$$

We remark that the model associated with the C_{N}-type Weyl group is equivalent to the B_{N}-case, and D_{N}-type model is obtained by setting $\gamma=0$.

[^0]Ground state wavefunction for (1) is

$$
\psi_{0}^{(A)}(x)=\prod_{j<k}\left|x_{j}-x_{k}\right|^{\beta} \prod_{j=1}^{N} \exp \left(-x_{j}^{2} / 2\right)
$$

and that for (2) is

$$
\psi_{0}^{(B)}(x)=\prod_{j<k}\left|x_{j}^{2}-x_{k}^{2}\right|^{\beta} \prod_{j=1}^{N}\left|x_{j}\right|^{\gamma} \prod_{j=1}^{N} \exp \left(-x_{j}^{2} / 2\right)
$$

Wavefunctions for excited states can be constructed in principle by using a kind of creation and annihilation operators which include coordinate-exchange[4, 5]. Namely, one can construct the operators with the following commutation relations:

$$
\left[H_{W}, a_{j}^{(W) \dagger}\right]=a_{j}^{(W) \dagger}, \quad\left[H_{W}, a_{j}^{(W)}\right]=-a_{j}^{(W)}
$$

for $W=A$ or B. Using these operators, one can easily see that the wavefunctions of the form,

$$
\begin{equation*}
f\left(a_{1}^{(W) \dagger}, \ldots, a_{N}^{(W) \dagger}\right) \psi_{0}^{(W)}(x) \quad(W=A \text { or } B) \tag{3}
\end{equation*}
$$

become eigenstates if $f\left(x_{1}, \ldots, x_{N}\right)$ are homogeneous polynomials. However naive choice of the polynomials does not create the orthogonal states with respect to the scalar product,

$$
(f, g)=\int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{N}\right) g\left(x_{1}, \ldots, x_{N}\right) \mathrm{d} x
$$

One should properly choose the polynomial $f\left(x_{1}, \ldots, x_{N}\right)$ of (3).
By using the exchange-operator formalism, we shall show that the proper choice is the Jack symmetric polynomials for both the A_{N-1}-case[6] and the $B_{N \text {-case }}[7]$.

2 Preliminaries

2.1 Creation and annihilation operators

We first introduce "gauge-transformed" Hamiltonians:

$$
\begin{aligned}
\tilde{H}_{A} & =\left(\phi_{0}^{(A)}\right)^{-1} \circ H_{A} \circ \phi_{0}^{(A)} \\
& =\frac{1}{2} \sum_{j=1}^{N}\left(-\frac{\partial^{2}}{\partial x_{j}^{2}}+x_{j}^{2}\right)-\frac{\beta}{2} \sum_{j \neq k} \frac{1}{x_{j}-x_{k}}\left(\frac{\partial}{\partial x_{j}}-\frac{\partial}{\partial x_{k}}\right),
\end{aligned}
$$

$$
\begin{aligned}
\widetilde{H}_{B} & =\left(\phi_{0}^{(B)}\right)^{-1} \circ H_{B} \circ \phi_{0}^{(B)} \\
& =\frac{1}{2} \sum_{j=1}^{N}\left(-\frac{\partial^{2}}{\partial x_{j}^{2}}+x_{j}^{2}-\frac{2 \gamma}{x_{j}} \frac{\partial}{\partial x_{j}}\right)-\beta \sum_{k \neq j} \frac{1}{x_{j}^{2}-x_{k}^{2}}\left(x_{j} \frac{\partial}{\partial x_{j}}-x_{k} \frac{\partial}{\partial x_{k}}\right)
\end{aligned}
$$

where $\phi_{0}^{(A)}$ and $\phi_{0}^{(B)}$ are polynomial parts of the ground state wavefunctions:

$$
\begin{aligned}
\phi_{0}^{(A)}\left(x_{1}, \ldots, x_{N}\right) & =\prod_{j<k}\left|x_{j}-x_{k}\right|^{\beta} \\
\phi_{0}^{(B)}\left(x_{1}, \ldots, x_{N}\right) & =\prod_{j<k}\left|x_{j}^{2}-x_{k}^{2}\right|^{\beta} \prod_{j=1}^{N}\left|x_{j}\right|^{\gamma} .
\end{aligned}
$$

We denote transformed ground state as $\widetilde{\psi}_{0}^{(\mathrm{c})}$, i.e., $\widetilde{\psi}_{0}^{(\mathrm{c})}=\prod_{j=1}^{N} \exp \left(-x_{j}^{2} / 2\right)$. We remark that this $\widetilde{\psi}_{0}^{(c)}$ is joint eigenfunction of \widetilde{H}_{A} and \widetilde{H}_{B}.

Creation and annihilation operators for these Hamiltonians can be constructed in quite similar way as in the case of the harmonic oscillators [3, 5]:

$$
A_{j}^{(W) \dagger}=\frac{1}{\sqrt{2}}\left(-D_{j}^{(W)}+x_{j}\right), \quad A_{j}^{(W)}=\frac{1}{\sqrt{2}}\left(D_{j}^{(W)}+x_{j}\right)
$$

for $W=A$ or B. Here we have used so-called "Dunkl operators"[8]:
A_{N-1}-type

$$
D_{j}^{(A)}=\frac{\partial}{\partial x_{j}}+\beta \sum_{k(\neq j)} \frac{1}{x_{j}-x_{k}}\left(1-s_{j k}\right) \quad(j=1, \ldots, N)
$$

B_{N}-type

$$
\begin{aligned}
D_{j}^{(B)}= & \frac{\partial}{\partial x_{j}}+\gamma \sum_{j=1}^{N} \frac{1}{x_{j}}\left(1-t_{j}\right) \\
& +\beta \sum_{k(\neq j)}\left\{\frac{1}{x_{j}-x_{k}}\left(1-s_{j k}\right)+\frac{1}{x_{j}+x_{k}}\left(1-t_{j} t_{k} s_{j k}\right)\right\}
\end{aligned}
$$

where the operators $s_{j k}$ and t_{j} act as follows:

$$
\begin{gathered}
s_{i j} f\left(\ldots, x_{i}, \ldots, x_{j}, \ldots\right)=f\left(\ldots, x_{j}, \ldots, x_{i}, \ldots\right) \\
t_{j} f\left(\ldots, x_{j}, \ldots\right)=f\left(\ldots,-x_{j}, \ldots\right)
\end{gathered}
$$

Commutation relations for these operators are the following:
A_{N-1}-type

$$
\begin{aligned}
& {\left[A_{i}^{(A) \dagger}, A_{j}^{(A) \dagger}\right]=\left[A_{i}^{(A)}, A_{j}^{(A)}\right]=0} \\
& {\left[A_{i}^{(A)}, A_{j}^{(A) \dagger}\right]=\delta_{i j}\left(1+\beta \sum_{k(\neq i)} s_{i k}\right)-\left(1-\delta_{i j}\right) \beta s_{i j},} \\
& s_{i j} A_{j}^{(A) \dagger}=A_{i}^{(A) \dagger} s_{i j}, \quad s_{i j} A_{j}^{(A)}=A_{i}^{(A)} s_{i j}, \\
& s_{i j} A_{k}^{(A) \dagger}=A_{k}^{(A) \dagger} s_{i j}, \quad s_{i j} A_{k}^{(A)}=A_{k}^{(A)} s_{i j} \quad(k \neq i, j),
\end{aligned}
$$

B_{N}-type

$$
\begin{aligned}
& {\left[A_{i}^{(B) \dagger}, A_{j}^{(B) \dagger}\right]=\left[A_{i}^{(B)}, A_{j}^{(B)}\right]=0,} \\
& {\left[A_{i}^{(B)}, A_{j}^{(B) \dagger}\right]=\delta_{i j}\left(1+\beta \sum_{k(\neq i)}\left(s_{i k}+t_{i} t_{k} s_{i k}\right)\right)} \\
& -\left(1-\delta_{i j}\right) \beta\left(s_{i j}-t_{i} t_{k} s_{i k}\right) . \\
& s_{i j} A_{j}^{(B)}=A_{i}^{(B)} s_{i j}, \quad s_{i j} A_{k}^{(B)}=A_{k}^{(B)} s_{i j} \quad(k \neq i, j), \\
& t_{j} A_{j}^{(B)}=-A_{i}^{(B)} t_{j}, \quad t_{j} A_{k}^{(B)}=A_{k}^{(B)} t_{j} \quad(k \neq j) .
\end{aligned}
$$

If we define \widehat{H}_{W} as

$$
\widehat{H}_{W}=\frac{1}{2} \sum_{j=1}^{N}\left(A_{j}^{(W)} A_{j}^{(W) \dagger}+A_{j}^{(W) \dagger} A_{j}^{(W)}\right) \quad(W=A \text { or } B)
$$

then \widehat{H}_{W} are related to the gauge-transformed Calogero Hamiltonians:

$$
\widetilde{H}_{W}=\operatorname{Res}\left(\widehat{H}_{W}\right)
$$

where $\operatorname{Res}(X)$ means that action of an operator X is restricted to symmetric functions of the variables x_{1}, \ldots, x_{N} for A_{N-1}-case, or to symmetric functions of the variables $x_{1}^{2}, \ldots, x_{N}^{2}$ for B_{N}-case. Hence, if we consider wavefunctions with above symmetry, spectrum of \widetilde{H}_{W} coincides with that of \widehat{H}_{W}. Hereafter we will consider \widehat{H}_{W} instead of \widetilde{H}_{W}.

Although the commutation relations for $A_{j}^{(W)}$ and $A_{j}^{(W) \dagger}$ are complicated, commutation relations with \widehat{H}_{W} are quite simple:

$$
\left[\widehat{H}_{W}, A_{j}^{(W) \dagger}\right]=A_{j}^{(W) \dagger}, \quad\left[\widehat{H}_{W}, A_{j}^{(W)}\right]=-A_{j}^{(W)}
$$

Using the operators $A_{j}^{(W) \dagger}$, one can construct excited state wavefunctions:

$$
\begin{array}{cl}
f\left(A_{1}^{(A) \dagger}, \ldots, A_{N}^{(A) \dagger}\right) \widetilde{\psi}_{0}^{(\mathrm{c})} & \text { for the } A_{N-1} \text { case } \\
f\left(\left(A_{1}^{(B) \dagger}\right)^{2}, \ldots,\left(A_{N}^{(B) \dagger}\right)^{2}\right) \widetilde{\psi}_{0}^{(\mathrm{c})} & \text { for the } B_{N} \text { case }
\end{array}
$$

with $f\left(x_{1}, \ldots, x_{N}\right)$ symmetric polynomials with homogeneous degree.

2.2 Symmetric and non-symmetric Jack polynomials

First we define "Cherednik operators" $\widehat{D}_{j}^{(A)}[9,10]$:

$$
\begin{align*}
\widehat{D}_{j}^{(A)}= & x_{j} D_{j}^{(A)}+\beta \sum_{k(<j)} s_{j k} \\
= & x_{j} \frac{\partial}{\partial x_{j}}-\beta \sum_{k(<j)} \frac{x_{k}}{x_{j}-x_{k}}\left(s_{j k}-1\right) \\
& \quad-\beta \sum_{k(>j)} \frac{x_{j}}{x_{j}-x_{k}}\left(s_{j k}-1\right)+\beta(j-1) . \tag{4}
\end{align*}
$$

Since the operators $\widehat{D}_{j}^{(A)}$ commute each other, they are diagonalized simultaneously by suitable choice of bases of $\mathbb{C}\left[x_{1}, \ldots, x_{N}\right][10,11]$. Such basis is called non-symmetric Jack polynomials. An non-symmetric Jack polynomial $E_{w}^{\lambda}(x)$, labeled with the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{N}\right)$ and the element $w \in S_{N}$, is characterized by the following properties[10, 11]:

1. $E_{w}^{\lambda}(x)=x_{w}^{\lambda}+\sum_{\left(\mu, w^{\prime}\right)<(\lambda, w)} C_{w w^{\prime}}^{\lambda \mu} x_{w^{\prime}}^{\mu}$,
2. $E_{w}^{\lambda}(x)$ is joint eigenfunctions for the operators $\widehat{D}_{j}^{(A)}$,
where we have used the notation $x_{w}^{\lambda}=x_{w(1)}^{\lambda_{1}} \cdots x_{w(N)}^{\lambda_{N}}$. To define the ordering $\left(\mu, w^{\prime}\right)<(\lambda, w)$, we use the dominance ordering $<_{D}$ for partitions[12], and the Bruhat ordering $<_{B}$ for the elements of S_{N}. Using these, we define the ordering as follows:

$$
\left(\mu, w^{\prime}\right)<(\lambda, w) \quad \Longleftrightarrow \quad \begin{cases}\text { (i) } & \mu<_{\mathrm{D}} \lambda, \\ \text { (ii) } & \text { if } \mu=\lambda \text { then } w^{\prime}<_{\mathrm{B}} w .\end{cases}
$$

We denote the eigenvalues of $\widehat{D}_{j}^{(A)}$ as $\epsilon_{j}(\lambda, w)$:

$$
\widehat{D}_{j}^{(A)} E_{w}^{\lambda}(x)=\epsilon_{j}(\lambda, w) E_{w}^{\lambda}(x) .
$$

The eigenvalues $\epsilon_{j}(\lambda, w)$ are all obtained by permutating the components of the multiplet $\left\{\lambda_{N-j+1}+\beta(j-1)\right\}_{j=1, \ldots, N}$.

Using the operator $\widehat{D}_{j}^{(A)}$, we introduce generating function of symmetric commuting operators[10]:

$$
\widehat{\Delta}_{\mathrm{S}}^{(A)}(u)=\prod_{j=1}^{N}\left(u+\widehat{D}_{j}^{(A)}\right)
$$

Since $\widehat{\Delta}_{\mathrm{S}}^{(A)}(u)$ is symmetric in $\widehat{D}_{j}^{(A)}$, symmetric eigenfunctions are obtained by symmetrizing $E_{w}^{\lambda}(x)$, which are nothing but the Jack symmetric polynomials $J_{\lambda}(x)$. Eigenvalues of $\widehat{\Delta}_{\mathrm{S}}^{(A)}(u)$ are then given by

$$
\begin{equation*}
\widehat{\Delta}_{\mathrm{S}}^{(A)}(u) J_{\lambda}(x)=\prod_{j=1}^{N}\left\{u+\lambda_{N-j+1}+\beta(j-1)\right\} J_{\lambda}(x) \tag{5}
\end{equation*}
$$

We note that all the eigenvalues of $\widehat{\Delta}_{\mathrm{S}}^{(A)}(u)$ are distinct for generic values of u.

3 Construction of orthogonal bases

$3.1 \quad A_{N-1}$-type model

We denote the algebra generated by the elements $x_{j}, D_{j}^{(A)}$ and $s_{i j}$ as $\mathcal{A}_{\mathrm{S}}^{(A)}$. We then introduce an $\mathcal{A}_{\mathrm{S}}^{(A)}$-module $\mathcal{F}_{\mathrm{S}}^{(A)}$ ("Fock space") generated by the vacuum vector $\widetilde{\psi}_{0}^{(\mathrm{s})}=1$. The elements $D_{j}^{(A)}$ of $\mathcal{A}_{\mathrm{S}}^{(A)}$ annihilate the vacuum vector, and $s_{i j}$ preserve $\widetilde{\psi}_{0}^{(\mathrm{s})}$, i.e.,

$$
D_{j}^{(A)} \widetilde{\psi}_{0}^{(\mathrm{s})}=0, \quad s_{i j} \widetilde{\psi}_{0}^{(\mathrm{s})}=\widetilde{\psi}_{0}^{(\mathrm{s})}
$$

We denote an algebra generated by $A_{j}^{(A)}, A_{j}^{(A) \dagger}$ and $s_{i j}$ as $\mathcal{A}_{\mathrm{C}}^{(A)}$. Since the commutation relations of these operators are the same as those of x_{j} and $D_{j}^{(A)}$, we can introduce an isomorphism of $\mathcal{A}_{\mathrm{S}}^{(A)}$ to $\mathcal{A}_{\mathrm{C}}^{(A)}$ as follows:

$$
\rho\left(x_{j}\right)=A_{j}^{(A) \dagger}, \quad \rho\left(D_{j}^{(A)}\right)=A_{j}^{(A)}
$$

We then extend ρ to the isomorphism of Fock spaces. Fock space for $\mathcal{A}_{\mathrm{c}}^{(A)}$ is constructed in the same way as $\mathcal{A}_{\mathrm{S}}^{(A)}$; Fock space $\mathcal{F}_{\mathrm{C}}^{(A)}$ is defined as $\mathcal{F}_{\mathrm{C}}^{(A)}=$ $\mathbb{C}\left[A_{1}^{(A) \dagger}, \ldots, A_{N}^{(A) \dagger}\right] \widetilde{\psi}_{0}^{(\mathrm{c})}$ where the vacuum vector $\widetilde{\psi}_{0}^{(\mathrm{c})}=\prod_{j=1}^{N} \exp \left(-x_{j}^{2} / 2\right)$ is annihilated by $A_{j}^{(A)}$, i.e., $A_{j}^{(A)} \widetilde{\psi}_{0}^{(\mathrm{c})}=0$. We denote also by ρ the isomorphism of $\mathcal{F}_{\mathrm{S}}^{(A)}$ to $\mathcal{F}_{\mathrm{C}}^{(A)}$ such that

$$
\rho\left(\widetilde{\psi}_{0}^{(\mathrm{s})}\right)=\widetilde{\psi}_{0}^{(\mathrm{c})}=\prod_{j=1}^{N} \exp \left(-x_{j}^{2} / 2\right)
$$

$$
\rho\left(a \widetilde{\psi}_{0}^{(\mathrm{s})}\right)=\rho(a) \widetilde{\psi}_{0}^{(\mathrm{c})} \in \mathbb{C}\left[A_{1}^{(A) \dagger}, \ldots, A_{N}^{(A) \dagger}\right] \widetilde{\psi}_{0}^{(\mathrm{c})}
$$

for $a \in \mathbb{C}\left[x_{1}, \ldots, x_{N}\right]$.
Since the operators $\widehat{D}_{j}^{(A)}$ commute each other, we can construct commuting operators $\widehat{h}_{j}^{(A)}$ acting on $\mathcal{F}_{\mathrm{C}}^{(A)}$ as

$$
\widehat{h}_{j}^{(A)}=\rho\left(\widehat{D}_{j}^{(A)}\right)=A_{j}^{(A) \dagger} A_{j}^{(A)}+\beta \sum_{k(<j)} s_{j k} .
$$

Generating function of symmetric commuting operators that include \widehat{H}_{A} is constructed by using $\widehat{h}_{j}^{(A)}$:

$$
\widehat{\Delta}_{\mathrm{C}}^{(A)}(u)=\rho\left(\widehat{\Delta}_{\mathrm{S}}^{(A)}(u)\right)=\prod_{j=1}^{N}\left(u+\widehat{h}_{j}^{(A)}\right) .
$$

Applying ρ to (5), we have the following eigenvalue equation for $\widehat{\Delta}_{c}^{(A)}(u)$:

$$
\begin{aligned}
& \widehat{\Delta}_{\mathrm{c}}^{(A)}(u) J_{\lambda}\left(A_{1}^{(A) \dagger}, \ldots, A_{N}^{(A) \dagger}\right) \tilde{\psi}_{0}^{(\mathrm{c})} \\
& \quad=\prod_{j=1}^{N}\left\{u+\lambda_{N-j+1}+\beta(j-1)\right\} J_{\lambda}\left(A_{1}^{(A) \dagger}, \ldots, A_{N}^{(A) \dagger}\right) \widetilde{\psi}_{0}^{(\mathrm{c})} .
\end{aligned}
$$

Since all the eigenvalues of $\widehat{\Delta}_{\mathrm{c}}^{(A)}(u)$ are distinct and the operator $\widehat{h}_{j}^{(A)}$ is self-adjoint with respect to the scalar product,

$$
(f, g)_{\mathrm{c}}^{(A)}=\int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{N}\right) g\left(x_{1}, \ldots, x_{N}\right)\left(\phi_{0}^{(A)}\right)^{2} \mathrm{~d} x
$$

we now know that the wavefunctions $J_{\lambda}\left(A^{(A) \dagger}\right) \widetilde{\psi}_{0}^{(\mathrm{c})}$ form an orthogonal basis for the A_{N-1} case.

$3.2 \quad B_{N}$-type model

Using the B_{N}-type Dunkl operators, we can define another set of commuting operator $\widehat{D}_{j}^{(B)}$:

$$
\begin{aligned}
\widehat{D}_{j}^{(B)}= & z_{j} D_{j}^{(B)}+\beta \sum_{k(<j)}\left(s_{j k}+t_{j} t_{k} s_{i k}\right) \\
= & z_{j} \frac{\partial}{\partial z_{j}}+\beta \sum_{k(<j)}\left\{\frac{z_{k}}{z_{j}-z_{k}}\left(1-s_{j k}\right)-\frac{z_{k}}{z_{j}+z_{k}}\left(1-t_{j} t_{k} s_{j k}\right)\right\} \\
& +\beta \sum_{k(>j)}\left\{\frac{z_{j}}{z_{j}-z_{k}}\left(1-s_{j k}\right)+\frac{z_{j}}{z_{j}+z_{k}}\left(1-t_{j} t_{k} s_{j k}\right)\right\}+2 \beta(j-1),
\end{aligned}
$$

where we have replaced the variables x_{j} with z_{j} for the latter convenience. If we restrict the action of $\widehat{D}_{j}^{(B)}$ to the functions with the symmetry $t_{j} f(z)=f(z)$, then $\widehat{D}_{j}^{(B)}$ is reduced to

$$
\begin{align*}
\operatorname{Res}^{(t)}\left(\widehat{D}_{j}^{(B)}\right)= & z_{j} \frac{\partial}{\partial z_{j}}+2 \beta \sum_{k(<j)} \frac{z_{k}^{2}}{z_{j}^{2}-z_{k}^{2}}\left(1-s_{j k}\right) \\
& +2 \beta \sum_{k(>j)} \frac{z_{j}^{2}}{z_{j}^{2}-z_{k}^{2}}\left(1-s_{j k}\right)+2 \beta(j-1) \tag{6}
\end{align*}
$$

Comparing (6) with (4), we find that $\operatorname{Res}^{(t)}\left(\widehat{D}_{j}^{(B)}\right)$ is equivalent to $2 \widehat{D}_{j}^{(A)}$ if we make a change of the variables $z_{j}=x_{j}^{2} / 2$.

Defining the operator $\widehat{\Delta}_{\mathrm{S}}^{(B)}(u)$ as

$$
\widehat{\Delta}_{\mathrm{S}}^{(B)}(u)=\prod_{j=1}^{N}\left(u+\widehat{D}_{j}^{(B)}\right)
$$

we have the following equation by using the correspondence between $\operatorname{Res}^{(t)}\left(\widehat{D}_{j}^{(B)}\right)$ and $2 \widehat{D}_{j}^{(A)}$:

$$
\begin{align*}
& \widehat{\Delta}_{\mathrm{S}}^{(B)}(u) J_{\lambda}\left(x_{1}^{2} / 2, \ldots, x_{N}^{2} / 2\right) \\
& \quad=\prod_{j=1}^{N}\left\{u+2 \lambda_{N-j+1}+2 \beta(j-1)\right\} J_{\lambda}\left(x_{1}^{2} / 2, \ldots, x_{N}^{2} / 2\right) \tag{7}
\end{align*}
$$

We call the algebra generated by the elements $x_{j}, D_{j}^{(B)}, s_{i j}$ and t_{j} as $\mathcal{A}_{\mathrm{S}}^{(B)}$, and the algebra generated by $A_{j}^{(B)}, A_{j}^{(B) \dagger}, s_{i j}$ and t_{j} as $\mathcal{A}_{\mathrm{C}}^{(B)}$. Since the commutation relations of these operators are the same as those of x_{j} and $D_{j}^{(B)}$, we can define an isomorphism σ of $\mathcal{A}_{\mathrm{S}}^{(B)}$ to $\mathcal{A}_{\mathrm{C}}^{(B)}$ as follows:

$$
\sigma\left(x_{j}\right)=A_{j}^{(B) \dagger}, \quad \sigma\left(D_{j}^{(B)}\right)=A_{j}^{(B)}
$$

We then introduce Fock spaces for $\mathcal{A}_{\mathrm{S}}^{(B)}$ and $\mathcal{A}_{\mathrm{C}}{ }^{(B)}$:

$$
\begin{aligned}
\mathcal{F}_{\mathrm{S}}^{(B)} & =\mathbb{C}\left[x_{1}^{2}, \ldots, x_{N}^{2}\right] \widetilde{\psi}_{0}^{(\mathrm{s})} \\
\mathcal{F}_{\mathrm{C}}^{(B)} & =\mathbb{C}\left[\left(A_{1}^{(B) \dagger}\right)^{2}, \ldots,\left(A_{N}^{(B) \dagger}\right)^{2}\right] \widetilde{\psi}_{0}^{(\mathrm{c})}
\end{aligned}
$$

The elements $D_{j}^{(B)}$ of $\mathcal{A}_{\mathrm{S}}^{(B)}$ annihilate $\widetilde{\psi}_{0}^{(\mathrm{s})}$, while $A_{j}^{(B) \dagger}$ annihilate $\widetilde{\psi}_{0}^{(\mathrm{c})}$. Hence the isomorpism σ can be extended to the isomorphism of the Fock spaces:

$$
\sigma\left(\widetilde{\psi}_{0}^{(\mathrm{s})}\right)=\widetilde{\psi}_{0}^{(\mathrm{c})}, \quad \sigma\left(a \widetilde{\psi}_{0}^{(\mathrm{s})}\right)=\sigma(a) \widetilde{\psi}_{0}^{(\mathrm{c})}
$$

for $a \in \mathbb{C}\left[x_{1}^{2}, \ldots, x_{N}^{2}\right]$.
Applying this isomorphism to (7), we have the following eigenvalue equation for $\widehat{\Delta}_{\mathrm{C}}^{(A)}(u)$:

$$
\begin{aligned}
& \widehat{\Delta}_{\mathrm{C}}^{(B)}(u) J_{\lambda}\left(\left(A_{1}^{(B) \dagger}\right)^{2} / 2, \ldots,\left(A_{N}^{(B) \dagger}\right)^{2} / 2\right) \widetilde{\psi}_{0}^{(\mathrm{c})} \\
& \quad=\prod_{j=1}^{N}\left\{u+2 \lambda_{N-j+1}+2 \beta(j-1)\right\} J_{\lambda}\left(\left(A_{1}^{(B) \dagger}\right)^{2} / 2, \ldots,\left(A_{N}^{(B) \dagger}\right)^{2} / 2\right) \widetilde{\psi}_{0}^{(\mathrm{c})} .
\end{aligned}
$$

Since all the eigenvalues of $\widehat{\Delta}_{\mathrm{C}}^{(B)}(u)$ are distinct and the operator $\widehat{h}_{j}^{(B)}$ is self-adjoint with respect to the scalar product,

$$
(f, g)_{\mathrm{C}}^{(B)}=\int_{-\infty}^{\infty} f\left(x_{1}, \ldots, x_{N}\right) g\left(x_{1}, \ldots, x_{N}\right)\left(\phi_{0}^{(B)}\right)^{2} \mathrm{~d} x
$$

we conclude that the wavefunctions $J_{\lambda}\left(\left(A^{(B) \dagger}\right)^{2} / 2\right) \widetilde{\psi}_{0}^{(\mathrm{c})}$ form an orthogonal basis for the B_{N} case.

4 Concluding remarks

We have constructed an orthogonal basis for the Calogero-type models by using the Jack polynomials whose arguments are Dunkl-type operators:
A_{N-1}-type model: $\quad\left\{J_{\lambda}\left(A_{1}^{(A) \dagger}, \ldots, A_{N}^{(A) \dagger}\right) \widetilde{\psi}_{0}^{(\mathrm{c})}\right\} \phi_{0}^{(A)}$,
B_{N}-type model: $\quad\left\{J_{\lambda}\left(\left(A_{1}^{(B) \dagger}\right)^{2} / 2, \ldots,\left(A_{N}^{(B) \dagger}\right)^{2} / 2\right) \widetilde{\psi}_{0}^{(\mathrm{c})}\right\} \phi_{0}^{(B)}$.
In both cases, wavefunctions are of the form,
(symmetric polynomials) \times (ground state wavefunction).
The polynomial parts may be regarded as a multi-variable generalization of classical orthogonal polynomials [13, 14]. In case of the A_{N-1}-type model, they are a multi-variable generalization of the Hermite polynomials while they are a multi-variable generalization of the Laguerre polynomials in the B_{N} case.

It should be noted that the norms of these orthogonal wavefunctions have been calculated via some limiting procedure[13, 14]. However dynamical correlation functions have not been calculated so far, due to the lack of some formulas needed. We hope that our results provide a useful tool for deeper understanding of the Calogero-type models.

References

[1] F. Calogero: J. Math. Phys. 12 (1971) 419-36.
[2] B. Sutherland: Phys. Rev. A4 (1971) 2019-21; Phys. Rev. A5 (1972) 13726.
[3] T. Yamamoto: Phys. Lett. A208 (1995) 293-302.
[4] A.P. Polychronakos: Phys. Rev. Lett. 69 (1992) 703-5.
[5] L. Brink, T.H. Hansson and M. Vasiliev: Phys. Lett. B286 (1992) 109-11.
[6] S. Kakei: "Common Algebraic Structure for the Calogero-Sutherland Models", preprint (solv-int/9608009), submitted to J. Phys. A: Math. Gen.
[7] S. Kakei: "An Orthogonal Basis for the B_{N}-type Calogero Model", preprint (solv-int/9610010), submitted to J. Phys. A: Math. Gen.
[8] C.F. Dunkl: Trans. Amer. Math. Soc. 311 (1989) 167-83.
[9] I. Cherednik: Invent. Math. 106 (1991) 411-32.
[10] D. Bernard, M. Gaudin, F.D.M. Haldane and V. Pasquier: J. Phys. A26 (1993) 5219-36.
[11] E.M. Opdam: Acta Math. 175 (1995) 75-121.
[12] I. G. Macdonald: "Symmetric Functions and Hall Polynomials", 2nd edition, Clarendon Press, Oxford, 1995.
[13] T.H. Baker and P.J. Forrester: "The Calogero-Sutherland Model and Generalized Classical Polynomials", preprint (solv-int/9608004).
[14] J.F. van Diejen: "Confluent Hypergeometric Orthogonal Polynomials Related to the Rational Quantum Calogero System with Harmonic Confinement", preprint (q-alg/9609032).

[^0]: * E-mail: kakei@poisson.ms.u-tokyo.ac.jp

